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Abstract

Background

In order to identify novel loci associated to Alzheimer’s Disease (AD) we conducted a genome-

wide association study (GWAS) in the Spanish population.
Methods

We genotyped 1128 individuals using the Affymetrix Nsp | 250K chip. A sample of 327 sporadic
AD patients and 801 controls with unknown cognitive status from the Spanish general
population were included in our initial study. To increase the power of the study, we combined
our results with those of four other public GWAS datasets by applying identical quality control
filters, and the same imputation methods which were then analyzed with a global meta-GWAS.
A replication sample with 2200 sporadic AD patients and 2301 controls was genotyped to

confirm our GWAS findings.
Results

Meta-analysis of our data and independent replication datasets allowed us to confirm a novel
genome-wide significant association of AD with membrane-spanning 4-domains subfamily A
(MS4A) gene cluster (rs1562990, P=4.40E-11, odds ratio (OR)=0.88, c.i.95%[0.85-0.91],
n=10,181 cases and 14,341 controls).

Conclusions

Our results underscore the importance of international efforts combining GWAS datasets to

isolate genetic loci for complex diseases.

Keywords: GWAS, SNP, association studies, Alzheimer’s Disease, molecular epidemiology,

neurogenetics



Background

Alzheimer’s disease (AD) is the most common neurodegenerative pathology afflicting humans.
The prevalence of AD is rapidly growing due to a continuous increase in life expectancy in
developed countries[1]. AD is considered a complex neurodegenerative disorder which
renders a progressive neuronal loss in the brain, causing a devastating cognitive phenotype,

which ends with the death of the patient.

Although AD etiology is poorly understood, genetic factors seem to play a pivotal role in AD. In
fact, three genes containing multiple full penetrance mutations, APP, PSEN1 and PSEN2 have
been described for mendelian AD[2-4]. A non-necessary non-sufficient common allele near
APOE transcript is almost universally associated with non-mendelian AD[5]. In spite of
research efforts in AD genetics, until very recently, no other genetic risk factor has been
consistently associated to AD phenotype. However, recent advances in genome wide
association study (GWAS) techniques have permitted the isolation of four uncontroversial
meta-GWAS significant (p<5xE-8) genetic markers associated to AD which are located near
CLU, PICALM, CR1 and BIN1 genes[6-8]. No other result derived from genetic studies has been

consistently validated for AD other than these loci.



Methods
Samples and datasets

In order to identify new AD associated SNPs, we designed a new case-control GWAS in the
Spanish population. We genotyped 1128 individuals using Affymetrix Nsp | 250K chip as
previously described[9]. A sample of 327 sporadic AD patients diagnosed as possible or
probable AD in accordance with NINCDS-ADRDA criteria[10] by neurologists at the Virgen de
Arrixaca University Hospital in Murcia (Spain) and 801 controls with unknown cognitive status
from the Spanish general population were included in our initial study. Mean (SD) age at
recruitment were 79.1 (6.8) years in cases and 52.0 (8.9) in controls. The corresponding
number (%) of female samples were 228 (71.5%), and 348 (45.4%) respectively. Mean (SD) age
at AD diagnosis in cases was 76.2 (6.9) years. Informed consent was obtained from each blood
donor. IRB approval for this research was obtained from the regional Ministry of Health
(Comunidad Auténoma de Murcia) and conforms to the World Medical Association’s

Declaration of Helsinki.

To increase the power of our study to detect small genetic effects, we combined our results
with those of four other public GWAS[11-14] GWAS datasets in the analysis include: a) the
Alzheimer's Disease Neuroimaging Initiative (ADNI) longitudinal study which is aimed at
identifying biomarkers of AD by using lllumina 610Quad platform and extensive Neuroimaging
techniques. A total of 187 early AD cases and 229 elderly controls were initially identified to be
included in this study[15]. ADNI Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database[16] . The ADNI was launched
in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), and other biological markers are related to the
progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD).
Determination of sensitive and specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor their effectiveness, as well
as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and University of California - San Francisco. ADNI

is the result of efforts of many co- investigators from a broad range of academic institutions



and private corporations, and subjects have been recruited from over 50 sites across the U.S.
and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in
the research - approximately 200 cognitively normal older individuals to be followed for 3
years, 400 people with MCI to be followed for 3 years and 200 people with early AD to be
followed for 2 years." For up-to-date information, visit ADNI’s webpage[16] . b) GenADA study
which includes 801 cases meeting the NINCDS-ADRDA and DSM-IV criteria for probable AD and
776 control subjects without family history of dementia that were genotyped using Affymetrix
500K GeneChip Array set [12, 17]. c) The National Institute of Aging (NIA) Genetic Consortium
for Late Onset Alzheimer’s Disease Study. Data from this study originally included 1,985 cases
and 2,059 controls genotyped with lllumina Human 610Quad platform [13]. However using
family trees provided we excluded all related controls and kept only one case per family. A
total of 1,077 cases and 876 unrelated controls were eligible for our study. d) TGEN GWAS
study included 643 LOAD cases and 404 controls from a neuropathological cohort and 197
LOAD cases and 114 controls from a clinical cohort all genotyped with Affimetrix 500K
GeneChip Array set [11].

Aggregated data available from Harold et al[7] and Hu et al.[18] were also used as “in silico”
replication studies. Available data from Harold et al include allelic OR estimates and p-values
for the 731 top signals from their study of 3,941 cases and 7,848 controls. A comprehensive list
of allelic OR estimates and p-values for 451,001 SNPs was obtained from Hu et al.
supplementary material. These data corresponded to the GWAS described in their manuscript

that includes 1,034 cases and 1,186 controls.

Finally a replication sample with 2,200 sporadic AD patients diagnosed as possible or probable
AD in accordance with NINCDS-ADRDA criteria by neurologists at Fundacié ACE in Barcelona
(Spain) and Hospital de Cantoblanco (Madrid), along with 2,301 general population controls
was used. Mean (SD) age at recruitment in this sample were 82.0 (7.7) years in cases and 54.7
(12.4) in controls. The corresponding number (%) of female samples were 1,559 (71.0%), and

1,540 (67.1%) respectively. Mean (SD) age at AD diagnosis was 77.9 (7.6) years.
GWAS Quality Control (QC) analyses.

We performed an extensive quality control on the five datasets with individual genotypes
included in the analysis (Murcia, ADNI, GenADA, NIA, TGEN) using Affymetrix Genotyping
Console software and Plink[19]. For our genotyped samples, only individuals with a sample call
rate above 93% were later re-called with the Bayesian Robust Linear Model with Malalanobis
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(BRLMM) distance algorithm, ran with default parameters, which improves call rates in most
samples. Self-reported sex was compared to sex assigned by chromosome X genotypes, and
discrepancies were resolved or samples removed. For all datasets, the program Graphical
Representation of Relationships (GRR)[20] was used to check sample relatedness and to
correct potential sample mixups, duplications, or contaminations. SNPs were selected to have
a call rate above 95% (in each case, control, and combined group, within each dataset), and a
minor allele frequency above 1% (again in each case, control, and combined group, within each
dataset). SNPs that deviated grossly from Hardy-Weinberg equilibrium (p-value<10-4) in
control samples were also removed. We also removed SNPs with a significantly different rate

of missingness (p-value<5x10-4) between case and control samples within each dataset.

To ensure all SNPs across all datasets were typed according to the same DNA strand, each
dataset was normalized using HapMap phase 2 data as the reference set. We merged each
study with the HapMap CEU samples and compared genotype calls. SNP calls were flipped (if
typed on opposite strand) or removed (if strand could not be undoubtedly assigned) as
necessary. We also removed SNPs that were significantly associated with “study status”. That
is, we labeled control individuals from each study as cases and HapMap CEU individuals as

controls, and removed SNPs with p-values smaller than 10-6 in a test for association.

Principal Components (PC) analysis.

Principal components analysis was carried out with EIGENSOFT [21, 22] to evaluate population
admixture within each population, and to identify individuals as outliers. We ran the
SMARTPCA program with default parameters, excluding chromosome X markers. To minimize
the effect of LD in the analysis, we also also excluded markers in high LD (with the indep-
pairwise option in Plink) and long-range LD regions reported previously or detected in our
population. Individuals identified as outliers (6 standard deviations or more along one of the
top ten principal components) were removed from all subsequent analyses. PC analysis was
run within each dataset, and also together with other HapMap european and worldwide

populations to detect individuals of different ethnicities.

Imputation

Since different platforms were used in the five GWAS analyzed, we imputed genotypes using
HapMap phase 2 CEU founders (n=60) as reference panel using two different methodologies:

Plink [19] and Mach[23]. Genome-wide imputation was carried out with plink, and genotype



calls with high quality scores were used in subsequent association analyses. Best association

results were also imputed with Mach 1.0, to confirm the consistency of imputed genotypes.

After all these quality control and preparatory steps, the Murcia study kept 1,034,239 SNPs for
319 cases and 769 controls; the ADNI dataset kept 1,794,894 SNPs for 164 cases and 194
controls; the GenADA dataset kept 1,436,577 SNPs for 782 cases and 773 controls; the NIA
dataset kept 1,738,663 SNPs for 987 cases and 802 controls.; and the TGEN dataset contained
1,237,568 SNPs in 757 cases and 468 controls. A total of 696,707 SNPs were common to all
GWAS studies whereas 1,098,485 and 1,951,797 SNPs were common to at least four and two

studies respectively.

Replication genotyping

The MS4A cluster polymorphism rs1562990 was genotyped in 2,200 cases and 2,301 controls
from the Spanish population using Real-time PCR coupled to Fluorescence Resonance Energy
Transfer (FRET). Primers and probes employed for these genotyping protocols are summarized
in Additional file 1, Table S1. The protocols were performed in the LightCycler ® 480 System
instrument (Roche Diagnostics). Briefly, PCR reactions were performed in a final volume of 20
pl using 20 ng of genomic DNA, 0.5 uM of each amplification primer, 0.20 uM each detection
probe, and 4 pL of LC480 Genotyping Master (5X, Roche Diagnostics, Germany). We used an
initial denaturation step of 959C for 5 min, followed by 45 cycles of 952C for 30 sec, 552C for 30
sec, and 729C for 30 sec. Melting curves were 95°C for 2 min s (ramping rate 4.4 2C/s), 629C for
30 s (ramping rate of 12C/s), 40°C for 30 s (ramping rate of 12C/s), and 68°C for 0 s(ramping
rate of 0.152C/s). In the last step of each melting curve, a continuous fluorimetric register was
performed by the system at one acquisition register per 2C. Melting peaks and genotype calls
were obtained by using the LightCycler®480 software (Roche). In order to confirm genotypes
selected PCR amplicons were bi-directionally sequenced using standard capillary

electrophoresis techniques.

Association analysis

Unadjusted single-locus allelic (1 df) association analysis within each independent sample, and
of the combined sample, was carried out using Plink. We combined data from these five GWAS
datasets using meta-analysis tool in Plink selecting only those markers common to at least four
of these studies (1,098,485 SNPs). The most promising and consistent results from these

single-locus analyses were compared to the aggregated estimates available from Harold et al



[7]and Hu et al[18]. Finally a replication sample of 2,200 cases and 2,301 controls from the
Spanish population was used to validate rs1562990. Although the main results of the study are
unadjusted estimates and p-values from the allelic test, multivariate logistic regression models
were also used to adjust estimates for the combined Spanish samples (Murcia GWAS and the
Replica) by age, sex, and APOE E+ status using Logistic option in Plink. A final meta-analysis and
Forest plot for marker rs1562990 including the five original GWAS, plus the two “in silico”

replica, and the final replica, was done with Stata 10.0 (College Station, TX) metan command.



Results and Discussion

The meta-analysis of the five GWAS (Murcia, ADNI, GenADA, NIA, and TGEN) included a total
of 3,009 cases and 3,006 controls. A total of 696,707 SNPs were common to all GWAS whereas
1,098,485 SNPs were common to at least four studies. Figure 1 shows a Manhattan plot with
the results of this GWAS Meta-analysis. We identified several signals, most of them found in
previously reported AD loci (Additional file 2, Table S2). The only GWAS significant result (p=
4.71x10-15) corresponded to rs10402271 in chromosome 19, a marker located 78kb upstream
from the APOE locus. Other suggestive signals were located in chromosome 2 (rs7561528
located 25kb downstream from the BIN1 locus), chromosome 22 (rs7561528 and rs13447284),
and multiple regions within chromosome 11. In fact, among the top 100 markers, 45 were
located on chr. 11 (Additional file 3, Figure S1). Chr. 11 contains several independent
suggestive association signals including the HBG2 locus (peak association at rs10838245,
p=1.04E-5), MSE4A gene family cluster (peak association at rs7626344, p=5.48E-6), GAB2
(rs450128, p=2.79E-6), downstream PICALM (rs4944558, p=1.50E-4), and downstream putative
gene mRNA BC038205 (rs7935502, p=7.47E-5).

We then conducted an “in silico” replication of our results using aggregated data from Harold
et al (which includes the top 731 signals from their study, many of them also located in
chromosome 11) and Hu et al (a comprehensive rank of 451,001 SNPs genotyped in their
GWAS)[7, 18]. Although limited by the number of SNPs available from these studies, the new
meta-analysis yielded quite interesting results with a total of 17 markers above the GWAS
significance level (Additional file 4, Table S3). Several signals belonged to known AD loci: APOE
with eight SNPs, PICALM (three SNPS, the most significant being rs536841, p=2.96E-9), CLU
(rs569214, p=4.11E-8), and BIN1 (rs744373, p=2.13E-9). Most important, we found four SNPs
that belong to a region in chromosome 1112 not previously reported as GWAS significant for
AD. The new peak for AD is located within the MS4A cluster and the most significant SNPs was
rs1562990 (OR: 0.87; p= 3.01E-10).

Since we have previously published replication studies of APOE, CLU, PICALM and BIN1 signals
in the Spanish population[8, 24], we decided to replicate only rs1562990 in 2,200 cases and
2,301 controls from the Spanish population. Importantly, the result of this new independent
replica was fully consistent yielding a significant OR of 0.90 (95%Cl:0.83-0.98; p=.01). Detailed
results for the original Spanish GWAS dataset, Spanish replica sample, and the combined

Spanish dataset are described in Additional file 5, Table S4. We fitted a multivariate logistic



regression model for the combined Spanish sample in which we adjusted for age, sex and
APOE. The adjusted OR estimate was virtually unchanged (OR 0.87; 95%Cl: 0.74-1.04; p=0.12)

suggesting that the observed effect is not influenced by age, sex or APOE in our series.

Finally, combining this new replication in a final meta-analysis together with the five original
GWAS and the two “in silico” replications yields an OR of 0.88 (95%Cl 0.85-0.91; p=4.4E-11)
which exceeds the accepted threshold for testing multiple comparisons (i.e., p<5E-8). A total of
10,181 cases and 14,341 controls are included in this combined analysis. The magnitude of

effect is consistent across studies, with all ten estimates between 0.74 and 0.91 (See Figure 2).

Our results point to the existence of a new AD locus located within MS4A cluster at 11q12.
Coincidentally, during the drafting of this manuscript two independent articles have emerged
reaching similar conclusions regarding MS4A cluster involvement in AD[25, 26]. Certainly, the
SNP markers described in the three studies are different, but they are only 83,871 bp apart.
However, our signal is closer to rs4938933 (reported by Naj et al., 2011)[27] which is only 9 kb
centromeric to rs1562990. In any case, peak markers observed in these studies are located in
the same haplotypic block and have identical effect size and direction which strongly suggest

that they are tracking the same functional variant.

It is important to mention that there exists sampling overlapping between these studies.
Nonetheless, at least three full datasets contained in our study (comprising 7809 individuals,
31%) do not overlap with previous published works. Importantly, meta-analysis using only
these non-overlapping samples also rendered a significant association to the MS4A region
OR=0,897 (95%Cl 0,838- 0,961; p=0.0018). Therefore, our study could be considered an
independent replication of the involvement of the MSA4A gene cluster on AD. The
concurrence of three independent studies reaching the same conclusion by employing
different SNP platforms, imputation methods and datasets underscores the strength and
consistency of this new AD locus, at least in European populations. Further studies will be

necessary to corroborate its involvement in AD etiology in other ethnic groups.

The MS4A family includes at least 16 paralogues. Each gene has been probably generated by
an ancestral cascade of intrachromosomal duplications during vertebrate evolution.
Unfortunately, this gene family is poorly characterized although a role in immunity has already
been shown for several members this cluster, including MS4A1 (CD20), MS4A2 and

MS4A4B[28]. However, the function in humans of many other members remains obscure and
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a more general involvement of MS4A family members as ion channel adaptor proteins in non-

immune tissues is suspected[28].

The rs1562990 marker maps between MS4A4E and MS4A4A members of the cluster. However,
we detected a critical LD haplotype block spanning 163kb that comprises three members of
the family (MS4A2, MS4A6A, MS4A4) and the top four meta-GWAS significant markers
(Additional file 4, Table S3) . With the available data it is difficult to determine the precise
location of the functional variant associated with AD, or even which gene could be the best
candidate for AD etiology. Furthermore, it may be the case that a functional non-coding
variant within the cluster might be altering, by cis-regulation, the function of other members
of the cluster simultaneously. Re-sequencing and functional studies of candidate mutations

could help resolve this question.

The most centromeric gene within the critical block, MS4A2, encodes a protein that binds to
the Fc region of immunoglobulins epsilon. MS4A2 seems responsible for initiating the allergic
response by binding of allergen to receptor-bound IgE that leads to cell activation and the
release of mediators (such as histamine). This signal cascade is responsible for the
manifestations of allergy[29]. Indeed, polymorphisms within the MS4A2 gene have been
associated with susceptibility to aspirin-intolerant asthma[30], and some epidemiological
studies suggest a link between asthma and AD [31]. Consequently, a hypothetical link between
MS4A2 and AD would add new evidence in favor of the AD neuroinflammatory hypothesis,
suggesting a role for the immune system in the pathogenesis of AD. The rest of genes within
the candidate block are poorly characterized and it is not easy to delineate a plausible

hypothesis for them yet.
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Conclusions

In summary, we report a new genetic locus associated with AD. Our work underscores the
importance of the combination of new GWAS data with existing datasets in order to identify
novel signals that can only emerge through meta-analysis. We are confident that the
increasing sample size of GWAS, the growing number of publicly available GWAS datasets, the
higher marker density and the development of novel strategies for GWAS data analysis will
help isolate novel genetic signals related to AD in the future and might contribute to

decreasing the missing piece of heritability in neurodegenerative disorders.
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Figure Legends

Figure 1. Manhattan plot of meta-analysis of five GWAS (Murcia, ADNI, GenADA, NIA, and
TGEN), including a total of 3,009 cases and 3,006 controls. A total of 696,707 SNPs were
common to all GWAS whereas 1,098,485 SNPs were common to at least four studies.

Figure 2. Meta-analysis and Forest plot of rs1562990, reporting Odds-Ratio (OR) with 95%
confidence interval, study-specific weight, sample size and minor allele frequency (MAF) in
cases and controls, for each study. The figure shows the remarkable consistency of the OR
across studies.
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Additional file 2

Title: Table S2. Top 100 results in the meta-analysis including 5 initial GWAS
Description: Best results obtained in our study.
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analysis contributing to the overall estimate of the marker; P:p-value from fixed effects model;
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P(Random):p-value from random effects model; OR:Pooled Odds Ratio estimate from fixed
effects model; OR(Random):Pooled Odds Ratio estimate from random effects model; Q:p-

value for Cochrane's Q statistic; I:I> heterogeneity index.
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